en
Книги
Fouad Sabry

Nonlinear Dimensionality Reduction

1: Nonlinear dimensionality reduction: Explore foundational concepts and the importance of reducing highdimensional data for easier analysis.

2: Linear map: Introduces the basics of linear mapping and its role in reducing data dimensionality in machine learning.

3: Support vector machine: Learn how support vector machines apply dimensionality reduction in classification tasks and pattern recognition.

4: Principal component analysis: Delve into PCA's technique for transforming data into a set of linearly uncorrelated variables.

5: Isometry: Examine how isometric techniques preserve distances between points while reducing data dimensions.

6: Dimensionality reduction: Understand the broader scope of dimensionality reduction and its applications in various fields.

7: Semidefinite embedding: Study semidefinite programming and its connection to dimensionality reduction methods.

8: Kernel method: Discover the power of kernel methods in handling nonlinear relationships in data reduction.

9: Kernel principal component analysis: Explore KPCA’s capability to perform dimensionality reduction in a highdimensional feature space.

10: Numerical continuation: Learn how numerical continuation techniques assist in understanding highdimensional systems.

11: Spectral clustering: Understand how spectral clustering leverages dimensionality reduction to group similar data points.

12: Isomap: A look at Isomap, a technique that combines multidimensional scaling with geodesic distances for dimensionality reduction.

13: Johnson–Lindenstrauss lemma: Delve into the mathematics of the JohnsonLindenstrauss lemma, which ensures dimensionality reduction maintains geometric properties.

14: LinearnonlinearPoisson cascade model: Study how this model integrates linear and nonlinear methods in dimensionality reduction.

15: Manifold alignment: Learn about manifold alignment and its importance in aligning data from different domains in dimensionality reduction.

16: Diffusion map: Understand how diffusion maps use the diffusion process for dimensionality reduction in complex datasets.

17: Tdistributed stochastic neighbor embedding: Explore tSNE's ability to reduce dimensionality while preserving local structures in data.

18: Kernel embedding of distributions: Study how kernel embedding allows for dimensionality reduction on distributions, not just datasets.

19: Random projection: A practical approach to dimensionality reduction that relies on random projections for fast computation.

20: Manifold regularization: Learn about manifold regularization techniques and their impact on learning from highdimensional data.

21: Empirical dynamic modeling: Discover how empirical dynamic modeling aids in dimensionality reduction through time series data analysis.
656 печатни страници
Оригинална публикация
2024
Година на публикуване
2024
Вече чели ли сте я? Какво мислите за нея?
👍👎
fb2epub
Плъзнете и пуснете файловете си (не повече от 5 наведнъж)