en
Christoph Korner,Kaijisse Waaijer

Mastering Azure Machine Learning

Уведоми ме, когато книгата е добавена
За да прочете тази книга, качете я във формат EPUB или FB2 в Bookmate. Как се качва книга?
Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes
Key FeaturesMake sense of data on the cloud by implementing advanced analyticsTrain and optimize advanced deep learning models efficiently on Spark using Azure DatabricksDeploy machine learning models for batch and real-time scoring with Azure Kubernetes Service (AKS)Book DescriptionThe increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud.
The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure ML and takes you through the process of data experimentation, data preparation, and feature engineering using Azure ML and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure AutoML and HyperDrive, and perform distributed training on Azure ML. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure ML, along with the basics of MLOps—DevOps for ML to automate your ML process as CI/CD pipeline.
By the end of this book, you'll have mastered Azure ML and be able to confidently design, build and operate scalable ML pipelines in Azure.
What you will learnSetup your Azure ML workspace for data experimentation and visualizationPerform ETL, data preparation, and feature extraction using Azure best practicesImplement advanced feature extraction using NLP and word embeddingsTrain gradient boosted tree-ensembles, recommendation engines and deep neural networks on Azure MLUse hyperparameter tuning and AutoML to optimize your ML modelsEmploy distributed ML on GPU clusters using Horovod in Azure MLDeploy, operate and manage your ML models at scaleAutomated your end-to-end ML process as CI/CD pipelines for MLOpsWho this book is forThis machine learning book is for data professionals, data analysts, data engineers, data scientists, or machine learning developers who want to master scalable cloud-based machine learning architectures in Azure. This book will help you use advanced Azure services to build intelligent machine learning applications. A basic understanding of Python and working knowledge of machine learning are mandatory.
Christoph Körner recently worked as a Cloud Solution Architect for Microsoft specialised in Azure-based Big Data and Machine Learning solutions where he was responsible to design end-to-end Machine Learning and Data Science platforms. Since a few months, he works as a Senior Software Engineer at HubSpot, building a large-scale analytics platform. Before Microsoft, Christoph was the Technical Lead for Big Data at T-Mobile where his team designed, implemented and operated large-scale data, analytics and prediction pipelines on Hadoop. He also authored the 3 books: Deep Learning in the Browser (for Bleeding Edge Press), Learning Responsive Data Visualization and Data Visualization with D3 and AngularJS (both for Packt). Kaijisse Waaijer is an experienced technologist, specializing in Data Platforms, Machine learning, and IoT. Kaijisse currently works for Microsoft EMEA as a Data Platform Consultant, specializing in Data Science, Machine learning and Big Data. She constantly works with customers across multiple industries as their trusted tech advisor, helping them optimize their organizational data creating better outcomes and business insights that drive value, using Microsoft technologies. Her true passion lies within the Trading Systems Automation and applying deep learning and neural networks to achieve advanced levels of prediction and automation.
Тази книга не е налична в момента
507 печатни страници
Оригинална публикация
2020
Година на публикуване
2020
Издател
Packt Publishing
Вече чели ли сте я? Какво мислите за нея?
👍👎
fb2epub
Плъзнете и пуснете файловете си (не повече от 5 наведнъж)