en
Книги
Fouad Sabry

Evolutionary Robotics

1: Evolutionary robotics: Introduces the core principles and evolution of autonomous robotic systems, emphasizing how robots can evolve through trial and error, similar to natural selection.

2: Evolutionary computation: Explains the computational techniques inspired by evolutionary biology, such as genetic algorithms, used to solve complex optimization problems in robotics.

3: Neuroevolution of augmenting topologies: Discusses a groundbreaking approach where neural networks evolve, including both structure and weights, to optimize robotic performance.

4: Neuroevolution: Explores the process of evolving artificial neural networks to enhance the capabilities of robots, focusing on their learning and adaptability.

5: Evolvable hardware: Delivers an overview of hardware systems that evolve in response to changing environmental conditions, bringing evolutionary concepts into physical robotic systems.

6: Sbot mobile robot: Examines the Sbot mobile robot, a key example of how evolutionary robotics techniques have been applied to realworld robotic platforms.

7: Dario Floreano: Highlights the contributions of Dario Floreano, a leading researcher in evolutionary robotics, whose work has significantly shaped the field.

8: Inman Harvey: Explores the research of Inman Harvey and his innovative approaches in the integration of evolutionary algorithms with robotic systems.

9: Phil Husbands: Focuses on the work of Phil Husbands in the area of autonomous robot behavior and his contributions to the application of evolutionary methods in robotics.

10: Stefano Nolfi: Investigates Stefano Nolfi's contributions to neuroevolution and his work on creating robots that learn and evolve in dynamic environments.

11: Neurorobotics: Covers the exciting field of neurorobotics, where robotics and neuroscience converge to develop robots that can mimic biological intelligence.

12: Artificial development: Describes the emerging field of artificial development, where evolutionary and developmental principles are applied to create more complex, adaptive robotic systems.

13: HyperNEAT: Introduces the HyperNEAT framework, an advanced method for evolving neural networks that generate complex robotic behaviors and structures.

14: Morphogenetic robotics: Focuses on morphogenetic robotics, where robots selforganize and adapt their physical forms through evolutionary processes.

15: Evolutionary developmental robotics: Examines how combining evolutionary algorithms with developmental robotics leads to the creation of robots that grow and learn over time.

16: Dave Cliff (computer scientist): Discusses the work of Dave Cliff, whose research in artificial life and evolutionary algorithms has influenced the development of adaptive robots.

17: Artificial life: Explores the relationship between artificial life and robotics, discussing how creating lifelike behavior in robots can lead to more intelligent systems.

18: Jordan Pollack: Highlights Jordan Pollack’s work in artificial evolution, particularly in relation to developing systems that mimic natural processes to improve robotic performance.

19: Sabine Hauert: Focuses on Sabine Hauert’s contributions to multirobot systems and how evolutionary principles can improve collaborative robot behavior.

20: Pavan Ramdya: Explores the work of Pavan Ramdya, whose research in robotics and neurobiology integrates the study of movement and behavior in autonomous robots.

21: Genetic programming: Concludes with a look at genetic programming, a method used to evolve programs that control robot behavior, facilitating automation in complex tasks.
101 печатни страници
Оригинална публикация
2024
Година на публикуване
2024

Други версии

Вече чели ли сте я? Какво мислите за нея?
👍👎
fb2epub
Плъзнете и пуснете файловете си (не повече от 5 наведнъж)